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A computer simulation of the time-dependent
Ginzburg-Landau model for spinodal decomposition

Rolls Petschek and Horia Metiu5'
Dwempenmt ICheodstrA Unbers'ty ofWfo-ix Sano Brbarm. Caftornia 93106
(Iseau ed 27 December 192; accepted I March 1983)

In this paper we discus the mults of computer simulations of the time-dependent Oinzburg-Landau
equation appropriate to the spinodal decomposition of a two-component mixture with a conserved order
parameter. The results for quantities of theoretical interest, such as the probability that the concentration has
Sparicular value in a particular cell, as well as experimentally accessible quantitie such as the structure

Amction. are presented. For reaus of computer space, the simulation was done in two dimensions. The
effects of incompressible flow. which might be important in some experimental situations, were not included
in these calculations.

r INTRODUCTION- energy A(c). The first one introduces a dynamic con-
The term spinodni decompostion is used to describe straint in the sense that the probability of having an ex-
The resiywdalh de -compoonenstusedxtodsre ibe cessively large change 8c(r) per unit time Is very small,

the process by which a two-component mixture in a
thermodynamically unstable region separates Into two even if such a change Is strongly favored by the free en-

equilibrium phases. -4 This Is a process of technolog- orgy. Even though a theoretical study of the dynamic

cal interest since It takes place in alloys, I polyners, Z Is modeltam) showed how one can infer a trnsition
glasses,' and binary liquids.$ It Is also of theoretical rate of the form taken in Eq. (1), we should consider

nterese-t' since it provides an example of a far from Eq. (1) to be untested and unproven if extended to other

equilibrium, strongly nonlinear "diflusional" process in caes such a spinodal decomposition.
which the fluctuations of the order parameter play an (b) If we assume that JCr, r) is a number A, and that
Important role. A" Is a small parameter, the muter equation can be

reducede3 " '1 to the time dependent Ginzl urg-Landu
Finally, it is a dynamic process taking place in an

unstable phase, below the critical point (we have in equation,

mind a phase diagram with an upper critical point), Oc(r, 1)/8 w Af 7 dF/dc(r, t)+ qKr, 1), (2)
which offers an opportunity to study whether the dynam-
ic scaling laws'2 and the universality behavior observed where M is a kinetic coefficient and i(r, t) is a Gaussian
above T, in stable phases still hold below T, under con- random force satisfying
ditions of thermodynamic instability. (qr,t) r, t)-2k&TM 8(t -t1)V8(r- r) . (3)

A phenomenological theory for the most probable The ltter requirement Is the fluctuaton dissipation
evolution of 'the concentration during decomposition his Theor equions the ca haiom
'i-. ben popoed b n e Tis uJ Iproed b Cok s°  theorem. Equations (2) and (3) are the Cahn-Cook meod-

been proposed by4~ This was Improved by CaokO el for spinodal decomposition. Nf the reduction of the
who added thermal fluctuations. Various reformulations
o , t e ngmaster equation to the Langevin equation is carried out
and e Kithr and rs b to a higher order in e" ', the resulting equation is rather

different from Eq. (3). Furthermore, If A" is not
The phenomenological theory Is heuriatic and con- smaUl enough, the reduction cannot be made and we must

trins a number of approximations whose validity has not work with the master equation. There is so far no ex-
been assessed a pviork perimental or theoretical proof that A" is very small;

pbiy cr)hhence that Eq. (2) Is adequate.Aee-some- models of in- -
(a) It is assumed that the probabiUty P(r(rs, t) that t .st,

the concentration at a point r has the value c(r) at time
I satisfies a master equations"' u

"2 with the transition (c) Finally, all theoretical work has used a van der
rate WailS, 4 Chan-Hilllard, 1 Glmnsu&rg-Landau,' Wilson"

free energy.
U'tCMr- C(r),8c(rm -exP~ drdr'..r, r') 6c(r) 6 (*-F (r

Rr} w(kBT/2) fdr [Acr)) (VT(r)?'- (4a)
x exV(- A[Fc(r)) + 6c(r)) - F(c(r))V2}. (f

This is the probability that the concentration changes in .(kT/2)fdr{aca(r)(/2)4(r).ICVc(r))'}. (4b)
unit time from c(r) to c(r) +c(r). The second exponen-
tial in Eq. (1) favors changes which diminish the free Here kh TAc)2 is the free energy density of a uniform

system constrained' s to have the concentration c.
*)A. P. Sloan Fellow and Camille and Henry Dreyfus, Teacher- Throughout this paper we will use the symbol c to de-

Scholar. note the difference between the concentration, denoted

-,:.._--.--'..---'.-..... ..... ,... .. ...... . .....-....... . ..- '...... .. ,.-.Q
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by C, and the "critical concentration" and will refer to culations to the experiment.
both loosely as "the concentration." More explicitly c The simulatio consists of using finite differences,
Is defined as that variable linear in the actual conce- in time and space, to turn Eq. (2) Into an algebraic
tration for which no cubic term appears in the function equation. We program the computer to generate at each
I. The gradient term takes Into account the fact that
the free energy is affected by the existence of a spatial "time slice" 1, and spatial point r, a random number

inhomogeneity in the concentration field and that the free I'n, t,) taken from a Gaussian distribution whose width

energy at a given point depends on the concentration at is given by the fluctution-dissipation theorem. We
neighboring points. The gradient term stabilizes inter- then solve for c(r,, 1 + At) in terms of these random
faces between phases and Is responsible for surface ton- variables and-c(re, 1.). We then repeat this procedurefaces w eeenase andirespnsibl for surfaeen- until we reach some latest time. A complete run gives
sion. P@ Is a reference free energy for a homogeneous us the values of c(r,, t,) at all space points r, and times
system. Equation (4b) is obtained from Eq. (4a) by wx- us the set t,) , ., p .r, a, times
panding c(r)) in power series around the concentration it. We call the set {c(r-, ,), i-1, 2, . . "., - "0, 1,2, .. 1

ofthehomogeneou reference., st~em. w t a "trajectory". U we repeat the calculation we getof the homogeneu referenc system.
.... .. a second trajectory, which differs from the first one due

Recent work''1 4'1 has shown that Eq. (4a), and the ,-' to stochastic nature of the quantity q. Running many
equation obtained from (4a) and Eq. (2), are a satisfac- statistically independent trajectories we compute the
tory starting point for the theory of static and some dy- average value of any function of concentration.
namic critical phenomena. These studies considered,
however, only steady-state dynamic phenomena taking For economic reasons we have carried out such cal-

place in a stable region of the phase diagram, above culatlons in two dimensions. We report here a variety

the coexistence line and close to the critical point, of quantities: the evolution of the concentration in time
Therefore their success does not imply that Eqs. (2)- during one trajectory; the probability Pt(c, t) that the
(4) are a satisfactory starting point for a description of concentration at a given point, at time t1 , equals , the
spinod-Al decomposition which takes place in the unstable probability P(c 4 , c,;I) that at time t, the concentration
region below the coexistence line, and is a relaxation at site is c, and that at site j is c,; the structure factor
experiment following a sudden change in the thermody- S(k, t) and its Fourier transform S(r, t); and some higher

namic state which can be carried out far from the criti- moments of P1c;L).
cal point. Since we have carried out two-dimensional calcula-

We consider, therefore, that the assumptions de- tions we cannot compare directly with three-dimensional
scribed above are reasonable but, as yet, unproven, experiments. However we show that the simulation re-
Attempts to justify them are hindered by the fact that produces the qualitative features observed in light scat-
the competing role of fluctuations, nonlinear interac- terig'e: the scattered light forms a ring which evolves

lions, and spatial variation of the order parameter, in time so that its intensity grows and its size contracts.

make these equations extremely difficult to solve. The The present theorys predicts that if the starting equa.
most ambitious calculations to date are those carried lions have even an approximate validity for physisorbed
out by Langer, Bar-on and Millers (LBM). These were systems on smooth surfaces [chemisorbed systems can
extended to include hydrodynamic (mode-coupling) ef- also be simulated if a lattice-molecule potential is added
fects by Kawasaki and Ohta. 21 An improved LBM type to Eq. (4)], then a binary adsorbed system will undergoansaz was reently studi-ed by Hill, Metiu, and
Pets chek. The method of solution involves heuristic at certain concentrations and temperatures, a separa-tion phase transition in which islands of high concentra-
assumptions whose validity in very difficult to assess. lion In one component are formed in a sea of low con-
We expect s that the LM results are better at the early citr In ofe component.he pesen alc-
times of the decomposition process. Further uncer- contrtion of the same component. The present calcu-
tainties in testingr these equations are caused by the pos- lation describes the rate of island formation. Whle no
-ainlestn tetn the e quatins aotre ued by muthpe kinetic measurements have been made, recent work"

sibility23 that the existing data is not free of multiple
scattering and, therefore, it should not be compared to has shown that the phase diagram of a Ar-Xe mixture

on graphite is such that an unmixing protess such as
s s rospinodal decomposition could occur. This might also

Even if the assumptions above are correct the param- happen in intercalated compounds.s
eters which go into the theory are not generally easy to Finally we emphasize that the present computer simu-
measure experimentally. Thus it Is difficult to make lation Is quite different from prevtos simulation work

critical comparisons between theory and experiment. which used the Monte Carlo method" to study the de-
We are thus in a situation in which both the starting composition in a two-component, nearest neighbor, ki-

equations and their solution might be erroneous, the data netic Ising model, or used molecular dynamics" to
ire not yet above suspicion and comparisons of theory study the decomposition of a Lennard-Jones fluid. The
and experiment are difficul. For these reasons we have connection between these microscopic theories and the
decided that some progress could be made by obtaining Glnzburg-Landau theory used by the phenomenological
the "exact" solution of the time-dependent Ginzburg- approach Is unclear', the latter must be a coarse grained
Landau equation [Eqs. (2), (3), and (4b)) by. a novel type (in time and space) version of the former models. Fur-
of computer simulation. We can, in principle, test the thermore, in the specific case of the Ising model, it is
existing approximate solutions by comparing them to not clear whether the model can be considered a repro-
our "exact" results, and we can also compare our cal- sentation of a binary fluid, especially'far away from the"F



critical temperature when universality can no longer be the initial exponential growth of the low k modes. It
invoked. In the case of molecular dynamics the time also contains the thermodynamic information concerning
scale is of the order of picoseconds, while we are In- the position, on the phase diagram, of the two final
terested in hydrodynamic time scales. Clearly the equilibrium phases towards which the system must

simulation presented here addresses a different ques- evolve.
tion than previous work, and it is aimed at establishing The random force i simulates thermal fluctuations
with accuracy the behavior of the time dependent Ginz- in wartae not included in our description. Assuming

in burgiaanda model.edi urdsciton ssmnIburg-Landau model. that they are Gaussian is justified if the system is in
local thermodynamic equilibrium and these fluctuations

II. THE MODEL AND THE METHOD OF SOLUTION relax quickly.

A. The model The form of Eq. (5) is determined by three kinds of

Equations (2) and (4a) lead to assumptions.

8c(r, 1)/5tj-(k.T2)rt) -K c(r, t)1.(r, t) (a) If we assume that A " is small, then we can use
L;- rEq. (2). To second order in A " the equation for ac/al

.k.TAI VI C'(rt 7KrA ) contains" additional terms of the form (aF/b)l and
=T 2  &I9 /ct ., which are Ignored here.

Here (r, t) Is the difference between the concentration (b) The free energy is a functional of c(r) and the
C(r, t) at the point r at time t, and the critical concen- gradient terms Ve -vc, VIC, V4c, etc., which are ro-
tration C,. Another important parameter is the con- tationally and translationally invariant. Equation (4) iS
centration cg of the system before the quench. If c9 # 0 an expansion in powers of c and Ve to the lowest physi-
(i.e., off critical quench), it is better to-work with caly reasonible order. All the terms appearing in Eq.
e'(r, t) a c(r, t) - c. When we switch to this new var- (4) are indispensable for a qualitatively correct picture
able, a quadratic term in c'(r, t) appears in Eq. (5). of the decomposition. More terms might be necessary
Such a term is thermodynamically necessary since, for for a quantitatively accurate description.
example, if e< 0 the quadratic term will bias the sys-
tem towards generating a larger amount of the equilib- Above the critical point patil inhomngeneties are
rium phase having lower cncnt on. 0, the reted by thermal ftutions. Since the pe is
rm phase ang oerd cnentations, thermodynamically stable, the inhomoageneities decay

and corresponding concentration fluctuations on large

If K, a, and 17 are zero, Eq. (5) reduces to the ordi- length scales are small. Furthermore, near the critical
nary diffusion equation. Since a f(Slf/Sc) , a> 0 in point the "interfaces" between fluctuations are smooth
the thermodynamically stable region of the phase dia- and lye Is tends to be small. This implies that under
grim (I. e., above the coexistence Line) and the "bare" these conditions Eq. (4) is likely to be quantiatively ads-
diffusion coefficient D9 a Mks Ta is positive. If we de- quate. This Is not, however, certain in spite of the fact
fine the spinodal line by (IS'fl)/ ea) -0, then the bare that the model has been so successful in explaining both

diffusion coefficient becomes negative below this line. static" and lynamic n " to critical phenomena. These
" Equation (5) Implies that below the spinodal, if K, u, studies have concentrated on determining the critical

are zero, a concentration fluctuation grows spontaneous- exponents, and universality assures that these are not
ly. This is the kinetic manifestation of the thermody- sensitive to the details of the model
Snmic Instability. Spinodal decomposition takes place below 2- and the

The gradient term KI V I Is introduced into the the- spatial, inhomogeneity is spontaneously created because
ory because, as the system becomes spatially inhomo- the system is thermodynamically unstable. Thus c(r, t)
geneous, some free energy must be used to create grows rapidly and higher powers of c might be necessary
boundaries between patches having different concentra- In Eq. (4). If the quench is far below T, there is no a
tions. The gradient term accounts for the appearance priori reason to expect that (V)' is smalt; higher pow-
of a surface tension between such patches. This term ers of (Vc)' might be needed in Eq. (4) as well.
prevents the spontaneous giwth of the high vetor Note that at early times E4. (4), and the resulting
Fourier components e,(t), tice such components re° kinetic Eq. (5), should work well since both c and VIc
suit in the formation of Aharp domain boundaries with
high surface tension. are expected to be small. For this reason it is very

important to carry out experiments at the earliest pos-
If Ke0, but u, 71=0 (this is Cahn's mode), the Fou- sible times to compare to the theory in a regime in

rtier transform of the equation gives Sc,(t)/bt u- Mks T which we expect it to work. If there is some fundamen-
xh'(ag.+0) c,(t) and the Fourier transform of the effec- tal problem with these equations, more basic than keep-
tive diffusion coefficient Is D(k) a Mka T k'(a + KOk). In ing only few terms in the expansion mentioned above, it

the unstable region, where a< 0, the Fourier compo- could show up by producing disagreement with the theory
nents C(l) with k<,'ra'r' grow exponentially while the In the short.time regime.
otheidecay exponentially. (c) A third type of approximation Is made by assum-

The nonlinear term (no 0) becomes mathematically Ing that the concentration is the only relevant field in !

Important as the decomposition proceeds and c(r, 1) the problem. In principle, changes In concentration are
grows. Physically, this is the term which slows down coupled to changes in energy density (or temperature)



ad fluid velocity. in solids, elastic strains which de- iteratively for c(r, I * Al) [the previous values, (r, t),
velop during decomposlilon often play a role. is known]. In practice, between two and four Iterations

The hydrodynamic effects have been introduced in the were usually sufficient.

. ULDM theory by Xawsaki and Ohta.1 t We are currently The generation of 71' has been done as follows. Using
studying such effects with the present simulation method the definition Eq. (9) for '(r, t) we compute
and hope to report the results In a future article. 31 Hy-
drodymnic effects are not expected to play a role in ( '(r1, 11)i'(rt, I,))=-2ksTA! V86(r,-r 1 ). (10)
illoys, but might be important In binary liquids. Using the finite difference expressions for v2 fi. e.,

The L.mperature field has two possible effects. First Eq. (6)) and the Kroneker delta, 8,,, for 6(r, - rt7,

the temperature and concentration fluctuations are cou- find

,. pled. It is therefore possible that the temperature fluc- (i'(r,, tj) ?'(r,, t,)) -8 h*& ka TMAJ (sat)
toations will affect the dynamic behavior of the system
(provided it does not relax too quickly). Second if the if r, ra and 1,. 1,
system relaxes adiabatically the mea temperature of (?'(r,, t) q'(rt, is)) -2 h-: k, T,1At (ib)

. the system will change during the decomposition. This It r, and rs are nearest neighbors and tj 1,
latter effect will be important near the critical pointand
only If the divergent part of the specific heat near the and
critical Point is comparable to the background value of (i(rj it)T/'(rl,))-0 (lie)
the specific heat. This Is true only extremely close tpo

the critical point in typical binary fluids. otherwise.

. The method of iolution This is exactly the form required by the fluctuation-
dissipation theorem applied to our discrete system.

The time-dependent Ginzbur-Landau equations is a
nonlinear, stochastic, partial differential equatiqn. We Practically we have obtained a Gaussian random field

have approximated it numerically in the following fash- wJth the covarance given by Eqs. (11) by defining
ion. The order parameter c(r) is given at a discrete q'(xY, t) h h" (&, y, t) - r'(;XF, yo t)5
set of points on a square lattice. This corresponds to

Staking a square "Brlllouin zone" rather than the circu- + VAX, y + 14 0 - VAX, y. t) ;12)

tar Brillouin some favored by theoretical treatments of here v, and vt are two statistically independent Gaussian
. thetime-dependent Glnzburg-Landau equations. This fields with the covariance

discrete lattice also Implies that the underlying point
symmetry is only a square symmetry rather than the (l(rk 11)ul(rtt) , 1n) vnrtt))S.ksT!, (13a) 3

circular symme wbich ould be expected in many i vl,,, fisft and
* systems of physical interest. The largest such lattice

used was a square with 32 x32 sites, due to limitations (v,(rt, It) vl(rt, is)) * (vg(r,, ,) vt(r, Q,)) =0 (13b)

t the size of the computer available for this work. The otherwise.
Laplacian was replaced by its finite difference expres- Not that we need to genrate one value of v1 and one

hkls x, y)=- '(x, y7 +c(x h, y) - Y) discrete value of the pair (x, y)]. This is accomplished

in a standard way by using a packaged generator of uni-
formly distributed random numbers. n our calculations

where A is the distance between the centers of two we have taken the initial concentration to have the same
nea hboring latine cells. value, ao, In every cell. This corresponds to the as-

This replacement reduces Eq. (5) to a system of (32)2 sumption that the Initial temperature is so high that there

stochastic, ordinary, differential equations of the are no fluctuos on the length scales of interest. fof the initial temperature were such that the correlation
r length is comparble to our lattice spacing h it would(7 be necessary to have fluctuations in c(, t - 0). n the

where C Is the inite difference equivalent of the rht- appropriate temperature range these fluctuations are

hand side of Eq. (5) ad {c(r)) a(a(r,), ... , c(r)) with approximately Gausian.
ms32x32. This system Is solved by writing We will assme that the quench is instantaneous. This

can be experimentally achieved in binary liquids by using(c~r,. +An)- c~r.f Owpressure jumps. We are currently studying the behavior'
G ({j (c(r, t+ A4+ .c(r, pj1(r., t) (8) of the system under the influence of time dependent tern-

perature (or pressure) changes, etc.
with dsrbdblw eumm uunvro h wop~g.UWU

.-'(r, t)3 s -6,1) d• (9) C. The qusnmti computed
There are a number of quantities that give some in-

• .- Usto the presription desribed below, we generate eight into the behavior of the decomposing system. The ,"

"mserical values for '(r, I). Then we solve Eq. (8) ones computed here are discussed below. I
.4

.. . .. . .. . .. .



The "one particle" distribution function Pt(c, t) is the square concentration fluctuation given by the linear the-
probability that the concentration in one cell, at time t, ory to
has the value a. We obtain this by making histograms
of the values of c at a given time t, for a sufficient num-
ber of trajectories. In particular we divide the range where C2 and Ct are the concentrations of the coexisting
of concentrations into which the concentration falls at equilibrium phases at the temperature at which the de-
any given time into a number of evenly spaced intervals, composition takes place. C, gives us a value of the
Then for each of the N sites on the lattice and the St tra- concentration fluctuation at which we know that nonlin-
jectories we count the number of times, M(c), that the ear effects are important. The mean square concentra-
concentration falls into the interval centered on the con- tion fluctuations for the linear theory are given by
centration c. We then estimate the probability as P1(c, 1)
=- .(c)'- N--(Ac)-, where Ac is the width of the con- (c(r, t) -fdiS(k, t)
centration Intervals.

The "two particle" distribution function Ps(c, c€';t) Is . ku0)(C//' )'Ka(7/ut)" 2 exp(-i/4r,), (18)
the probability that, at time t, the concentration in cell where S(k a0) is the equilibrium value of the structure
i is e and the concentration In cellj is c;. This is ob- factor at the temperature T =T,+ IATI (AT is the mag-

tained in a similar way by !making histograms for the nitude of the temperature quench T, - T, where T is the
pair (c', c,) by sampling over all pairs in which the cells temperature at which the decomposition takes place),
have the same geometrical position with respect to each K4 a 2"tr "/r(d/2)'- is the area of a d-dimensional
other, the statistics are improved by including In the surfacelo(*) divided by S*(k a 0), |" is the correlation
sampled set values generated by many trajectories, length at the temperature T" and

The structure factor S(k, t) is defined by To- K/2fa (19)

S1(fu Y 1~c~Ve1(L'~~N' . 15) is the decomposition time scale for the linear theoryS"t) •O(t) cl(t), ,N-1 m-, . (15) (one-quarter the growth rate of the growing mode). The
Here last term in Eq. (18) is the asymptotic (long time) valueof the integral.

c,()0 c,(t)exp(ik. ri), (16) Thus we see that the length of time during which the
linear theory is applicable is given (In units of 70) by the

where rl is the position of the center of the cell i, and logarithm of
k is the two-dimensional wave vector, constrained to
give periodic boundary conditions. That is, k= a(2r/L)n,

and .,=(2vr/L)n,, where n,, n, are integers. We sum For the parameter values used in the present simula-
over all the vectors k having the length k and over all tions, the value of R Is 10 (in computing this we used
trajectories and divide by the number of trajectories at mean field values for 4, S,,, Cs, and C1. As the ex-
and the number of cells N, to obtain the structure fac- perimentala (and theoretical) value of R in three di-
tor per cell. mansions is 16 we expect the effect of the nonlinearity

n the present simulation to be comparable to that in
Ill. RESULTS-AND DISCUSSION three dimensions near the critical point.

A. The choice of parameters The initial concentration in all the simulations pre-

Except for scale factors, the equilibrium behavior of sented here was taken to be the same in all cells. This
the Ginzburg-Landau equation depends on two dimen- implies that the system is initially at a temperature high
sionless parameters. These are the mean field corre- above the critical point so that the initial fluctuations
lation length, given in units of the lattice spacing h, Jm, are very small compared to those occurring during

(a /1,zK8 h' and the parameters G a [(u/4) spinodal decomposition. In one simulation the initial
x(K/2)y/S1 u ('(2a)(k5 T), where d is the dimension- concentration was taken to have its critical value, so
ality of the space and a ad- 1/2(4 - d). The parametu that c(t=O)=O. In the other we use c(t=0)=-0.47C,
G is the Ginsburg criterion [see Ref. 19(a), Sec. M6] (with C,, as defined in Eq. (18), computed within mean
which is used to estimate how important the fluctuations field Gnzburg-Landau theory).
are in determining the values of the equilibrium quanti-
ties for a system described by Ginzburg-Landau free B. Results
energy. 1. The concentration pattern and its growth

For the simulations discussed in this paper we have
2.5 ( 0.6) and .2. Since and 2 show qualitatively the concentrationchosen values a2patterns generated by one trajectory, at three different

is small we expect that the equilibrium properties of times following the quench. The darkness in a given
the system are given, to good approximation, by the tes flwg the quenr in thren
mean field theory. Moreover, since the fluctuationsconcentration therein.mant fiednthe. Moreoveretuniversal behavior. The darkest cells have the largest positive deviation ofare not dominant we do not expect bthe concentration from the critical value, and the light-

To establish the importance of the nonlinear effects eat ones have the largest negative deviation. In the off
during the spinodal decomposition we compare the mean critical quench (Fig. 2) the cells having the majority

"~~~~~~~~~~~~............-...--- . . .-.-... '." - .''.i. . •,."',."-
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31 FIG. 1. This figure gives a qualitative visual impression of

I the concentration distribution duriag splnodal decomposition,
in critical quench. The der ee of darkn(s s proportional t
the local concentration. The light (dark) squares are placed
where the local concentrtion is smaller (larger) thn the c i- .'

IP ical concentration. The Fip. (a). (b). and (c) represent the
concentration distribution at the times 10 r0. 56 r . and 223 -,.
respectively, after the quench. The darkness scale has been
chosen so that the lightest and the darkest squares represent
places where c - 1.1 C, , that have the maximum concentration
fluctuations. The mean field value of C, [defined in Eq. 07)1

was used.

IL)

phase concentration are colored lightly. Note that as I Is essentially Identical to the usual definition of the
the size of the concentration patches increases the magnitude of k in the range Ikl'<2, e.g., throughout

boundary between them becomes sharper. the range of Interest. The structure function S has been.
averaged over all wave vectors having the same values

2. The structure factor and other moments of Ik I'.

In Fig. 3 we have shown typical plots of the dimen- The error bars were deduced by assuming that for
slonless structure factor per unit coll, K( Ic(k) lt)/INks , each trajectory the nonzero or imaginary parts of the
where YV is the number of lattice sites and K Is defined Fourier transform of the concentration are Gaussian
in Eq. (4a). The structure function . has been plotted random variables. This is the expected result for suf-
as a function of tkl'n(4-2(cos(hh)+cos(kh))r ' /2, the flciently large systems since each Fourier component
discrete analog of the magnitude of k. to particular, of the order parameter is the sum of a larle numbe o f
Ikis Is simply the square root of the Fourier transform essentially independent contributions from noninteract-
of the discrete Laplacian [Eq. (6)]. It has been made Ing patches. The central limit theorems implies there-
dimensionless by multiplying by the lattice spacing h. fore that the sum Is a Gaussian random variable. This

I-i
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argument, of course, fails for integrals over the Fourier tent with the error bars. For these times we have not

components of the concentration, e.g., the concentra- been able to find a convincing scaling form for the struc-

tion at a given point is not necessarily Gaussian. We ture function as a function of some scaled wave vector.

have checked the above assumption by calculating, from It is also of interest to Fourier transform the struc-

t!e results of our simulation, the mean square fluctua- tire factor and find the correlation function S(Ii)
tion for the square of each Fourier component. We find * ((')c(r + r')). This function is plotted in Fig. 6 for

no statistically significant deviations from Gaussian be- several times. It is interesting to note that 3Ir r) is a

hbaylor, smooth f(nction of the absolute value of the separation,

In Figs. 4 and 5 we have shown the values of the for se; -rations less than 16 lattice spacings (this is hail

structure function for various times during the decor way - )ss the finite lattice). It therefore appears that

position. In these figures we have simply drawn smy. ft tape of the underlying square lattice is relatively

curves through plots similar to those in Fig. 3, consis tnimportant to the structure function and we conjucture
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FIG. 3. The Fourier transform of the structure factor. S(k,.) as a function of k, for several values of the time after the quench.
(a) the critical quench, for t a 35 1g;. (b) the critical quench, for 8 - 223 T91 (a) the off-crLtical quench for f a 56 rj; (d) the off-
critical quench" for t - 223 r". The (one standard deviation) error bars were estimated as discussed In the text.

that this is also relatively unimportant to the other short times by comparing the results of our simulation
quantities which we calculate. It is also Interesting to to the linear equations for the structure factor. We find
note that the dependence of the structure function on that after 0. 5 and I linear growth times (I. e., 1/to -.2
Ir 1. The shape at small I rl is euy to understand or 4) the amplitude of the fastest growing linear mode
nearby points tend to have similar values of the concea- already exceeds by a factor of 2 that given by the full
tration. Because of the conservation law there is a sum nonlinear simulation.
rule (f drS(r)., 0) and therefore 5( I r l) must be negatvaul (orSr Howendvere ford ae lriste e atie It is Interesting to ask whether or not this disagree-

t larer r. However we find a persistent pek at yet ment between the results of the computer simulation and
larger r which contributes appreciably to this sum rule. telinear the can b e dmplyeb the and
This is due to the relative sharpness of the peak in the
structure functin as a function of k. This suggests tt phase approximation (RPA) theory for the interactionse. srucurefuntio asa fncton f k Ths sggets hat between the quickly rlaxing high k modes and the more
some care should be taken in simulating spinodal de- betw ly relaxing h modes and the mor
composition to ensure that the system Is large enough sol re tin m s in t e c
as spatial correlations persist appreciably further than the structure function Is given by

the naive estimate ir/k,. where h, is the location of 2 S(k) Mj a kI'+a)S(k)+l1 (21)
the maximum in the structure function as a function of k dt f[s A
at that time. Note that for the latest time for which we where
have data the second peak In the structure function Is
zero only at 15 lattice constants, essentially halfway aUPA= *a 3nS(r =O). (22)
across our finite lattice. Rather than solving these equations and comparing the

We have tested the validity of the linear theory at results to those of the computer simulation we have
4.t
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FIG. 4. A plot of the structure factor SO, 0) K I (k, ) 12s FIG. S. Same as Fig. 4, but for the off-critial quench.
)(AskT)"t as a func'tion of k. The value of kt is computed as
described in See. 11 B. The curves were visually smoothed
out, consitent with the estimated error bars. (a) Represents
$(k, t) for a critical quench anid vrious times- t-=10 r@, a solid chosen to examine the computer simulation to see when
Une-, I- 23 ro, a dotted line; t-w38 To, dashed line. t- aS 6or, a the assumptions of the RPA theory breakdown. It seemsdot-dashed Una. W Represents 50,1) for a criical quench
for various times: tm 7? r@. a solid line, t - 100 r. a dotted reasonable to assert that this breakdown will be less do-

line t -127 '0 &  ash d l ue. (€) R ep ese ts ( ,) f r •pendent on the choice of initial state (w hich is not easily
critical quench, at various times: t = 136 rg, a dotted line; t controllable in real experiments) than the detailed mein
•100 'o, a dotted line; t a 24.30 rj dashed line. field theory dynamics.
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0.6. 3. The distribution functions

Another quantity of interest is the one particle dis-.
tribution function PI(c, t) defined in Sec. IIC. This is

a., (a) the probability that the concentration at an arbitrary

0. 24 .I cell has the value c at time 1. Numerical results for
M -\ P(c, t) as a function of c, at various times, are displayed

0. ... . _ in Figs. 8 and 9. The initial distribution (t = 0) has non- .7
.' 25 zero value for c -co only, since this our initial condition.

At later times the distribution broadens and then starts
-9.2 to develop two peaks near the mean-field equilibrium

values. For co=O (Fig. 8) the distribution is symme-
R tric with respict to 0. As the time evolves the number

of cells having the initial concentration is substantially

0.6 diminished and the peak values become more and more
probable. In other words more cells tend to have the
concentration near the mean-field equilibrium values.

0.4
In the very long time limit, when the system reaches

0.2 \ equilibrium we expect that P,(c;t- -a) consists of a sum
of two nearly Gaussian distributions centered around

-0.2 I.
FIG. 6. The structure factor S( I r I, t) as a function of Ir, I,
at various times after the quench. (a) The critical quench:
tmlO a -e, a solid line; ta38 -0 , a dotted line; ta100 ro, a
dashed line; t 223 T, a dot-dashed line. (b) Same as (a), but 0
for the off-critical quench.

In particular, underlying the RPA assumptions Is that
the fluctuations in c(r) are Gaussian (like In the linear
model, but with the width renormalized by fluctuations).
In Fig. 7 we give plots of (c(r)') - 3 (c(r)2)2. For the t i me
off-critical quench we have also given (c3), for a critical
quench our free energy functional gives (C) a0. If the
fluctuations are Gaussian both (c4)- 3 (c2)2 and (C3) are
zero and the non-Gaussian nature of the fluctuations can
be deduced from the dimensionless ratios ((c') -3 (ca?/'
(c2)2 and V)/c'>/c>. The graphs show that the fluctua-
tions become non-Gaussian quite early in the decompo-
sition, indicating that nonlinear effects reach quickly
beyond the behavior implied by the random phase ap- 0
proximation. 100 200

It is difficult to assess a priori the statistical uncer-
tainty in the one-point moments discussed above or in
various other quantities which are discussed below.
This is because the statistical distribution of such quan- 1W
tities at a single point is a complex dynamical quantity
and because all such quantities were averaged over allm
the sites in the lattice. Thus, these quantities are the £ i me
sum of a large number of statistically dependent vari- FIG. 7. We show here the dependence of time of various quart-
ables with distributions and correlations which are not titles related to the RPA approximation (see the text). (a) For
known a priori. Some idea of the accuracy of these mo- a critical quench we have: Full line: We plot am given by Eq.
ments can be obtained by calculating the value of mo- (22h. dotted line: We plot (I c(R,) 12) I/C2 as a function of

ments such as (c(r)>, which are required by symmetry times dashed line: We plot (((Rt) 4) -3 (c1Rt)')/CL. as a

.tO be zero in the critical quench. Such tests suggest function of time. b) Same as (a), but for the off-critical
that the statistical accuracy of these moments and those quench. The mean field value of C,, defined In Eq. (17), was
discussed below are of order 3%. used.
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having a width given by I S,(k)dk where S(k) Is the

FIG. $. The probability P(, ) of finding the concentration c, equilibrium value of the concentration correlation func-
In a cell at the tmet after a critical quench. (a) I-10rl. (b) tion In the corresponding phase. We have tried to fit
t a 38 1r4; (a) t1223 r. 4e the text for a discussion of the Pt(c, t) at earlier times with such a double Gaussian form
definition of P. and were qua titlaliely unsuccessful.
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FIG. 10. Contour plots if the tvo-poit probability d~stribution p2(c,,c,.L). representing the probability that at tme * the con-
centon in one cell In et and that In a nearest neighbor is c2. The axes represent the values ofte, and c:. The tick natks
represent the mea field values of Cn. The solid lines are lines of constant probability drawn at equally spaced intervals
(ie 1 , c2).-AP x; a Integer). Dotted lines have been drawn at intermediate intervals [Pl. c2),"AP(m +0. 5)] In regions-whore the
contours are widely spaced. The value of AP was 0. 62 C"2. This has been done at several times; (a) t -10 TS (b) a- 38 re; (c)
9 100 r,, (d) Dm233 re.

We have also computed the two-point probability dis- symmetry under c I- - c t, C2 - - ct exists only Ink a
tributLon function P&(c, c,;t) defined in Sec. 11 C. This critical quench for a free energy functional which is
is the probability that, at time t, the concentration in unchanged by c - - c.
the cell i is , and that in cell j is e. In Figs. 10 o orb

11 w shw cntor plts oinng he pint (C, c) ~one cell is near one equilibrium concentration and that
equal probability. This should be read as a topographic anihoigcl sa h te qiiru ocn
map in which the surface of the "mountains" is anigon g Isrlaiel isall th i h ow thatibiu theoncie-

thec1 cse) ate fi edj are neaigs neighbors... prsen domain walls separating the areas of different phases
the asewhe S nd areneaestneihbos..are large compared to lattice spacing. If this were not

The symmetry of these figures under the exchange the case we would expect the dynamics to depend on the
CS is a consequence of the definition of Pg. The underlying lattice.
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FIG. 11. In this figure we have given contour plots of the two-
Point probability distribution for a number of Pairs of coils with

different separation at the time 233 rg (the latest time shown
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I n F i g. 1 0 ) . A d e s c r i p t i o n o f t h e s e p lo t s is g iv e n in th e c a p t i o nto Fig. 10, as Is a plot for nearest neighbor pairs (Fig. 10(d)

along the x or y axes of the computer simulation by distances of
4 (Fig. 11(b)). sad 8 (Fig. 11(b) lattice spings.
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